
Rethinking the
Linux kernel
Thomas Graf
Cilium Project, Co-Founder & CTO, Isovalent

2
Cameron Askin: Cameron’s World

Remember
GeoCities?

3

Markup Only (HTML)

What enabled this evolution?

Programmable Platform

Programmability Essentials

4

Untrusted code runs
in the browser of the
user.

→ Sandboxing

Allow evolution of
logic without requiring
to constantly ship new
browser versions.

→ Deploy anytime with
 seamless upgrades

Programmability must
be provided with
minimal overhead.

→ Native Execution
 (JIT compiler)

Safety Continuous
Delivery

Performance

Kernel Architecture

5

TCP/IPVFS

L
in

u
x

K
e

rn
e

l

Network DeviceBlock Device

AdminProcess Process

Network
Hardware

Storage
Hardware

Configuration
(sysfs,netlink,procfs,...)

Sockets

recvmsg()sendmsg()

Syscall

read()

File Descriptor

write()

Syscall

U
se

r
S

p
ac

e
H

W

Cons:

● You likely need to ship a different
module for each kernel version

● Might crash your kernel

● Change kernel source code
● Expose configuration API
● Wait 5 years for your users

to upgrade

6

Kernel Development 101

● Write kernel module
● Every kernel release will break it

Cons:

Option 1
Native Support

Option 2
Kernel Module

How about we add
JavaScript-like capabilities

to the Linux Kernel?

7

8

9

Process

Scheduler

execve()

L
in

u
x

K
e

rn
e

l Syscall

eBPF Runtime

10

Controller

Sockets

bpf()
L

in
u

x
K

e
rn

e
l

TCP/IP

Network Device

recvmsg()sendmsg()

Process

Syscall

Verifier

 JIT Compiler

BPF
Program

BPF
Program

BPF
Program

approved

x86_64

Syscall

Safety & Security
The verifier will reject any
unsafe program and
provides a sandbox.

Continuous Delivery
Programs can be exchanged
without disrupting workloads.

Performance
The JIT compiler ensures
native execution
performance.

bytecode

eBPF Hooks

11

Process

Storage
Hardware

Sockets

TCP/IP

Network Device

read()

File Descriptor

VFS

Block Device

write()
L

in
u

x
K

e
rn

e
l

Network
Hardware

Process

SyscallSyscall

Where can you hook? kernel functions (kprobes), userspace functions (uprobes), system calls,
fentry/fexit, tracepoints, network devices (tc/xdp), network routes, TCP congestion algorithms,
sockets (data level)

recvmsg()sendmsg()

eBPF Maps

12

Controller

Sockets

L
in

u
x

K
e

rn
e

l

TCP/IP

Network Device

Process

Syscall Syscall

Admin

BPF
Map

Syscall

Map Types:
- Hash tables, Arrays
- LRU (Least Recently Used)
- Ring Buffer
- Stack Trace
- LPM (Longest Prefix match)

What are Maps used for?

● Program state
● Program configuration
● Share data between programs
● Share state, metrics, and

statistics with user space

recvmsg()sendmsg()

eBPF Helpers

13

Sockets

L
in

u
x

K
e

rn
e

l

TCP/IP

Network Device

Process

Syscall

What helpers exist?
● Random numbers
● Get current time
● Map access
● Get process/cgroup context
● Manipulate network packets and

forwarding

● Access socket data
● Perform tail call
● Access process stack
● Access syscall arguments
● ...

[...]
num = bpf_get_prandom_u32();
[...]

recvmsg()sendmsg()

eBPF Tail and Function Calls

14

L
in

u
x

K
e

rn
e

l

What are Tail Calls used for?

● Chain programs together
● Split programs into independent

logical components
● Make BPF programs composable

What are Functions Calls used for?

● Reuse functionality inside of a
program

● Reduce program size (avoid
inlining)

15

 Community
287 contributors:
(Jan 2016 to Jan 2020)

● 466 Daniel Borkmann (Cilium; maintainer)
● 290 Andrii Nakryiko (Facebook)
● 279 Alexei Starovoitov (Facebook; maintainer)
● 217 Jakub Kicinski (Facebook)
● 173 Yonghong Song (Facebook)
● 168 Martin KaFai Lau (Facebook)
● 159 Stanislav Fomichev (Google)
● 148 Quentin Monnet (Cilium)
● 148 John Fastabend (Cilium)
● 118 Jesper Dangaard Brouer (Red Hat)
● [...]

16

eBPF Projects

High-performance L4
Loadbalancer

facebookincubator/katran

Android & Security
kernel runtime security
instrumentation (KRSI),
Android BPF loader,
eBPF traffic monitor

bcc, bpftrace
Performance
troubleshooting &
profiling

iovisor/bcc

Traffic Optimization
DDoS mitigation, QoS,
traffic optimization,
load balancer

cloudflare/bpftools

Falco
Container runtime
security, behavior
analysis

falcosecurity/falco

Cilium
Networking, security and
load-balancing for k8s

cilium/cilium

et al.

https://github.com/facebookincubator/katran
https://lwn.net/Articles/808048/
https://source.android.com/devices/architecture/kernel/bpf
https://source.android.com/devices/tech/datausage/ebpf-traffic-monitor
https://github.com/iovisor/bcc
https://blog.cloudflare.com/cloudflare-architecture-and-how-bpf-eats-the-world/
https://github.com/cloudflare/bpftools
https://github.com/falcosecurity/falco
https://github.com/cilium/cilium

 Tracing & Profiling with

17

Sockets

L
in

u
x

K
e

rn
e

l

TCP/IP

Process

Syscall

Verifier

 JIT Compiler

Syscall

BPF
Program

Python

 BCC

BPF
Maps

BCC:
github.com/iovisor/bcc

recvmsg()sendmsg()

tcptop
Tracing... Output every 1 secs. Hit Ctrl-C to end
<screen clears>
19:46:24 loadavg: 1.86 2.67 2.91 3/362 16681

PID COMM LADDR RADDR RX_KB TX_KB
16648 16648 100.66.3.172:22 100.127.69.165:6684 1 0
16647 sshd 100.66.3.172:22 100.127.69.165:6684 0 2149
14374 sshd 100.66.3.172:22 100.127.69.165:25219 0 0
14458 sshd 100.66.3.172:22 100.127.69.165:7165 0 0

https://github.com/iovisor/bcc

 bpftrace

bpftrace - DTrace for Linux

18

File Descriptors

L
in

u
x

K
e

rn
e

l

VFS

Process

Syscall

Verifier

 JIT Compiler

Syscall

bpftrace
Program

BPF
Maps

bpftrace:
github.com/iovisor/bpftrace

bpftrace -e 'kprobe:do_sys_open { printf("%s: %s\n", comm, str(arg1)) }'
Attaching 1 probe...
git: .git/objects/da
git: .git/objects/pack
git: /etc/localtime
systemd-journal: /var/log/journal/72d0774c88dc4943ae3d34ac356125dd
DNS Res~ver #15: /etc/hosts
^C

open()

https://github.com/iovisor/bpftrace

Networking, load-balancing
and security for Kubernetes

19

Sockets

L
in

u
x

K
e

rn
e

l

TCP/IP

Container

Syscall

Verifier

 JIT Compiler

Syscall

 Clium

BPF
Maps

Network Device

Sockets

Container

Syscall

Network Device

Network
Hardware

TCP/IP

 Kubernetes

20

Container Networking
● Highly efficient and flexible networking
● Routing, Overlay, Cloud-provider native
● IPv4, IPv6, NAT46
● Multi cluster routing

Service Load balancing:
● Highly scalable L3-L4 load balancing
● Kubernetes services (replaces

kube-proxy)
● Multi-cluster
● Service affinity (prefer zones)

Container Security
● Identity-based network security
● API-aware security (HTTP, gRPC, Kafka,

Cassandra, memcached, ..)
● DNS-aware policies
● Encryption
● SSL data visibility via kTLS

Visibility
● Service topology map & live visualization
● Advanced network metrics & alerting

Servicemesh:
● Minimize overhead when injecting

servicemesh sidecar proxies
● Istio integration

21

Hubble: eBPF Visibility for Kubernetes

hubble observe --since=1m -t l7 -j \
 | jq 'select(.l7.dns.rcode==3) | .destination.namespace + "/" + .destination.pod_name' \
 | sort | uniq -c | sort -r
 42 "starwars/jar-jar-binks-6f5847c97c-qmggv"

 Development
Program Maps

 Runtime

Go Development Toolchain

22

clang -target bpf

Sockets

L
in

u
x

K
e

rn
e

l

TCP/IP

recvmsg()sendmsg()

Process

Verifier

 JIT Compiler

Syscall

BPF
Program

C source

BPF
Program

bytecode

BPF
Map

Syscall

 Go Library

Go Library: https://github.com/cilium/ebpf

https://github.com/cilium/ebpf

23

Outlook: Future of
 is turning the Linux
kernel into a microkernel.

● An increasing amount of new kernel
functionality is implemented with eBPF.

● 100% modular and composable.
● New additions can evolve at a rapid pace.

Much quicker than normal kernel
development.

Example: The linux kernel is not aware of
containers and microservices (it only knows
about namespaces). Cilium is making the
Linux kernel container and Kubernetes
aware.

 could enable the Linux kernel
hotpatching we always dreamed about.

Problem:
● Linux kernel vulnerability requires to

patch kernel.
● Rebooting 20’000 servers takes a very

long time without risking extensive
downtime.

Function

Function

Function

 Hotfix

L
in

u
x

K
e

rn
e

l

Thank You
eBPF Maintainers
Daniel Borkmann, Alexei Starovoitov
Cilium Team
André Martins, Jarno Rajahalme, Joe Stringer,
John Fastabend, Maciej Kwiek, Martynas
Pumputis, Paul Chaignon, Quentin Monnet,
Ray Bejjani, Tobias Klauser
Facebook Team
Andrii Nakryiko, Andrey Ignatov, Jakub
Kicinski, Martin KaFai Lau, Roman Gushchin,
Song Liu, Yonghong Song
Google Team
Chenbo Feng, KP Singh, Lorenzo Colitti,
Maciej Żenczykowski, Stanislav Fomichev,
BCC & bpftrace
Alastair Robertson, Brendan Gregg, Brenden
Blanco
Kernel Team
Björn Töpel, David S. Miller, Edward Cree,
Jesper Brouer, Toke Høiland-Jørgensen

24

● BPF Getting Started Guide
BPF and XDP Reference Guide

● Cilium
github.com/cilium/cilium

● Twitter
@ciliumproject

● Contact the speaker
@tgraf__

All images: Pixabay

https://docs.cilium.io/en/stable/bpf/
https://github.com/cilium/cilium
https://twitter.com/ciliumproject
https://twitter.com/tgraf__
https://pixabay.com/

