What We Got Wrong

Lessons from the Birth of Microservices at Google

== LIGHTSTEP
S

Part One: The Setting

K ‘*\\ ‘
Still betting big on the
Google Search Appliance

“Those Sun boxes are
SO expensive!”

“Those linux boxes are
so unreliable!”

“Let’s see what's on
GitHub first...”

— Iiterally nobody in 2001

b” circa 2001

Table of Contents

.

Introduction

* Des: s of Some GNU Projects
o Lists of other GNU Projects

Descriptions of Other Projects

Introduction

Here are some lists of various project that we feel that you should know about. Most projects in these lists aims to develop a program, or
a set of programs that can be used together to form a complete system for some specific task, but developing software is not mandatory
for being a GNU Project. If you're looking for specific software, you should also look at our software page.

If you are interested in helping the GNU Project, please have a look at the lists below for some of the projects needing doing, and are
actively seeking volunteers. Please also look at writing free software both for lists of other projects needing doing, and for general

guidelines.

Descriptions of GNU Projects

These are just a fraction of the software projects that the GNU Project is working on. We hope to list more projects here in the future.

Classpath is a set of essential libraries for supporting the Java language.
Free Film Project is a complete set of utilities which, when used together, will act as a complete virtual film studio.
GPKCS-11 is an i ion of PKCS#11: Cry ic Token Interface Standard.

GNU Cobol is an effort to create a compiler for the Cobol language.

GNU Enterprise aims at developing a complete system for various business needs.

GNU GLUE aims to create a distributed groupware application framework based on emerging new Internet standards, such as
XML, WebDAV and RTSP, suitable for both synchronous and asynchronous and both on-line and disconnected operation.
The GNU Octal project seeks to create a set of free components that work together as a digital music workstation for unix-like
systems.

GYVE stands for “*the GNU Yellow Vector Editor". It is a vector-based drawing program in the spirit of Adobe Illustrator and
Corel Draw.

Harmony is aimed at creating an API-compatible replacement for the Qt toolkit.

The HURD is the kernel of the GNU system.

o e e e s e

® © ®) welcome! - The Apache Softw X +

< C @ https://web.archive.org/web/20020124131007/http:, org A

he Apache Software Foundation

e

http://www.apache.org/

Apache Projects

HTTP Server
APR

Jakarta

Perl

PHP

TCL

XML
Conferences

e e s e s s 0

The Apache Software Foundation provides support for the
Apache community of open-source software projects. The Apache
projects are ized by a i based
development process, an open and pragmatic software license,
and a desire to create high quality software that leads the way in
its field. We consider ourselves not simply a group of projects
sharing a server, but rather a community of developers and users.

You are invited to participate in The Apache Software

Foundation

News & Status
Press Kit
Contact

o e s e

Get Involved

« Contributing
* Mailing Lists

o CVS Repositories

Download

o from a mirror
o from here

Sister Projects

o e e

Java-Apache

‘e welcome contributions in many forms. Our
membership consists of those individuals who have demonstrated
a i to ive open-source software P
through sustained participation and contributions within the
Foundation's projects.

|Apache News by Email

If you would like to keep up with news and annoucements from
the foundation and all its projects, you can subscribe to the new
Apache Announcements List.

Featured Projects

Below we feature a few of the many Apache projects.

htt;

://xml.apache.org/cocoon/

Version 2 of the Apache Cocoon XML publishing
framework has been released. Cocoon is a powerful
framework for XML web publishing which brings a
whole new world of abstraction and ease to
consolidated web site creation and management
based on the XML paradigm and related
technologies.

== LIGHTSTEP

Engineering constraints

- Must DIY:
- Very large datasets
- Very large request volume
- Utter lack of alternatives
- Must scale horizontally
- Must build on commodity hardware that fails often

Google eng cultural hallmarks, early 2000s

- Intellectually rigorous
- “Autonomous”
- Aspirational

Part Two: What Happened

Cambrian Explosion of Infra Projects

Eng culture idolized epic infra projects (for good reason):

GFS

BigTable

MapReduce

Borg

Mustang (web serving infra)

SmartASS (ML-based ads ranking+serving)

oward
anemawd: M e

Convergent Evolution

Common characteristics of the most-admired projects:

- |dentification and leverage of horizontal scale-points

- Well-factored application-layer infra (RPC, discovery,
load-balancing, eventually tracing, auth, etc)

- Rolling upgrades and frequent (~weekly) releases

Sounds kinda familiar. ..

Part Three: Lessons

Lesson 1

Know Why

Org design, human comms, and microservices

You will inevitably ship your org chart

Accidental Microservices

- Microservices motivated by planet-scale
technical requirements

- Ended up with something similar to modern
microservice architectures ...

- ... but for different reasons

What’s best for Search+Ads is
best for alll

What’s best for Search+Ads is
pbest for et just the massive,
planet-scale services

‘But | just want to serve 51B!!”

— tech lead for a small service team

Architectural Overlap

Planet-scale
systems software

Software apps with
lots of developers

Microservices

Lesson 2

“Independence” is
not an Absolute

pplies vs Ants

More Ants!

Microservices Platforming: D&D Alignment

Good
Platform decisions are “Our team is going to
multiple choice build in OCaml!”
Lawful Good Chaotic Good
kubernetes
Lawful 1] Chaos

True Neutral

AWS Lambda <redacted>

Lawful Evil Chaotic Evil

Evil

Lesson 3

Serverless Still Runs on Servers

An aside: what do these things have in common”?

mport json, urllib2, boto3

def lanbda_handler(event, context):
response = url1b2.urlopenChttps: //ip-ranges. anazonans . con/ip-ranges. json'
json_data = json.loads(response. read():
new_ip_ranges = [x['ip_prefix'] for X in json_datal'prefixes'] if x['service'] == 'cloudfront’]
print(new_ip_ranges)
ec2 = boto3. resource("ec2')
security_group = ec2. securitygroup("sg-3xxexxsx')
current_ip_ranges = [x['cidrip'] for x in security_group.ip_permissions(0]['ipranges']]
print(current_ip_ranges)

parans_dict = {

useridgrouppairs.
}

authorize_dict

arans_dict.copy()

== LIGHTSTEP

About “Serverless” / FaaS

Numbers every engineer should know

Latency Comparison Numbers (~2012)

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 1006 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD

Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

1 ns = 107-9 seconds
1 us = 10”7-6 seconds 1,000 ns
1 ms = 10~-3 seconds = 1,000 us = 1,000,000 ns

By Jeff Dean: http://research.google.com/people/jeff/
Originally by Peter Norvig: http://norvig.com/21-days.html#answers

About “Serverless” / FaaS

Latency Mumbers Everd Programmetr Should Enow

Hins B Main memory reference: 168 ns M Send 1KB over 1Gbps network: 18ps B Read 1MB sequentially
from33D: 1ms
- .
L1 cache reference! 8.5ns ===== =1us === ===== Disk seek: 18 ms
EEE 55D random read (1CGb/s 55D0:
(1] mmm 190us
M W Branch nispredict: Sns EEEENR EEE EEEEN
| | EEEER N NN Read LMB sequentially
1
Wl
1]

= Main memory reference: 100 nanoseconds

EEE
EEE
EEE
=== Round trip within same datacenter: 500,000 nanoseconds
EEE
EEE
aRmARERREE EEEEEEEEEE
T R EEEEEEEEEE
EEEEEEEEEE EEEEEEEENE
EEEEEEEEEE H
EEEEEEEEEE EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
TRA R Source! httpsi//gist.aithub.com/ 2841832

Real datal

Hellerstein et al.: “Serverless Computing:

One Step Forward, Two Steps Back”

- Weighs the elephants in the room
- Quantifies major issues, esp re service

VCIUPIIICIIL UL 1ICTW JLALCLUL DCTIL VILTH, WIILILIL dlICT L1IC LUIC Ul 111UuUclil
computing. Meanwhile, with innovation deterred, the cloud ven-
dors increase market dominance for their proprietary solutions.

'T‘]'\ic]‘iﬂﬂ n{" rnacnninn‘ maxr cuiagaeact f]'\a‘l' QDY‘TDY]DCQ anﬂllf‘iﬂﬂ' l"t'\‘l'l]l']

Serverless Computing: One Step Forward, Two Steps Back

Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith, Vikram Sreekanti,
Alexey Tumanov and Chenggang Wu
UC Berkeley
{nellerstein,jmale 1 jssmith,vik

comms and function lifecycle

Func. Invoc.
(1KB)

Lambda I/O
(S3)

Lambda I/O
(DynamoDB)

EC21/0
(83)

EC21/0
(DynamoDB)

EC2 NW
(oMQ)

303ms
1,045%

Latency
Compared to best

108ms
372X

11ms
37.9%

106ms
365%

11ms
37.9%

290us
1x

arXiv:1812.03651v1 [cs.DC] 10 Dec 2018

ABSTRACT

Serverless computing offers the potential to program the cloud in

an autoscaling, pay-as-you go manner. In this paper we address

crtical gaps in frst-generation serverless computing, which place
tential with d

offers the attractive notion of aplatform in the cloud where devel-
opers simply upload their code, and the platform executes it on
their behalf as needed at any scale. Developers need not concern
themselves with provisioning or operating servers, and they pay

only for the used when their code is invoked.

computing: notably data-centric and distributed computing, but
also open source and custom hardware. Put together, these gaps
make current serverless offerings bad ft for cloud innovation
and particularly bad for data systems innovation. In addition to
pinpointing some of the main shortfalls of current serverless ar-
chitectures, we raise a set of challenges we believe must be met
to unlock the radical potential that the cloud~—with its exabytes of

1 INTRODUCTION

Amazon Web Services recently celebrated its 12th anniversary,
‘marking over a decade of public cloud availability. While the cloud
b to ;i fi begin-

‘The notion of serverless computing is vague enough to allow
optimists to project any number of possible broad interpretations
on Our goal here is not to quil
terminology. Concretely, each of the cloud vendors has already
launched serverless computing infrastructure and is spending a
significant marketing budget promoting it. In this paper, we assess
the field based on the serverless computing services that vendors
are actually offering today and see why they are a disappointment
as big as the cloud's potential,

11 “Serverless” goes Faa$

To begin, we provide a quick introduction to Functions-as-a-Sersice
(FaaS), the commonly used and more descriptive name for the core
of serverless offerings from the public cloud providers. Because

data capacity ‘power ever
available to the general public, managed as a service.

AWS was the first public cloud—and remains the largest—we focus
our discussion on the AWS Faa$ framework, Lambda; offerings
from Azure and GCP differ in detail but not in spirit,

pite that pot
in radical ways. The cloud today is largely used
platform for standard enterprise data services. For this to change,
creative developers need programming frameworks that enable
them to leverage the cloud’s power.

puting pically ¢
progrumaming languages snd environments. Yt decade ater

P 3

cloud. And whether cause o effect, the results are clearly visible

in practice: the majority of cloud services are simply multi-tenant,

easier-to-administer clones of legacy enterprise data services like
bject storage, databases, tems, and

textbook Traditional programming is based on writing functions,
which to outputs, £
He

prog:
the cloud s to allow developers to register functions in the cloud,
and compose those functions into programs.

‘Typical FaaS offerings today support a variety of languages (e,
Python, Java, Javascript, Go),allow programmers to register func-
tions with the cloud provider, and enable users to declare events
that trigger each function. The Faa$ infrastructure monitors the
triggering events, allocates a runtime for the function, executes it,
and persists the results. The user i billed only for the computing

able goals, and

of the new services internals

in their own right. But this s, at best, only a hint of the potential
offered by millions of cores and exabytes of data

Recently, public cloud vendors have begun offering new pro-

d

A FaaS offering by itself is of litle value, since each function
execution is isolated and ephemeral. Building applications on Faa$

banner of

interest s growing. Google search trends show that queries for the

term “serverless” recently matched the historic peak of popularity

of the phrase “Map Reduce” or “MapReduce” (Figure 1). There has
lso b i

from the research community [13, 6, 26, 14]. Serverless computing

in addition trigger and scale
Asa result, cloud providers are quick to emphasize that serverless
is not only FaaS. It is FaaS supported by a “standard library”: the
various multitenanted, autoscaling services provided by the ven-
dor'. In the case of AWS, this includes 53 (large object storage),
DynamoDB (key-value storage), SQS (queuing services), SNS (noti-
i s managed

This anicle is published under 3 C; sons Atbution License

th orginl work tothe suthare) and CIDR 2015

and operated by AWS; developers simply register FaaS code that

“props ol is

Lesson 4

Beware Giant Dashboards

We caught the regression!

60K
100 -
o HEEEER s —
50 T __-—_"'_ 1] I |
20k R R R R R R R R AR Y sEEE R AR R R R R R R R AR R R R R R R R R R R AR R AR R R R R R AR RN
Bl

T T : T T
12:00 May 21 12:00 Mon 22 12:00 Tue 23

0K

T T T T T T T f T T T
12:00 May 21 12:00 Mon 22 12:00 Tue 23 12:00 May 21 12:00 Mon 22 12:00 Tue 23

... but which is the culprit?

0 T
12:00
60K
100
40K
50 I
20« s RRERRRRRRRARRRARE

Pt hARAL T

May 21 12:00 Mon 22 12:00 Tue 23
0.8
150
100
50
| \
0 ‘ e 0 ‘ ‘ : : : :
12:00 May 21 12:00 May 21 12:00 Mon 22 12:00 Tue 23
1.5K
&M
1K 6M 1
L | ! { |11
0.5K
2M
oK : 7 7 i ¥ oM i i . (i Raay
12:00 May 21 12:00 Mon 22 12:00 Tue 23 12:00 May 21 12:00 Mon 22 12:00 Tue 23

A # of reasons
things breakA

Must reduce

the search space!

- # of things your users

actually care about
______________________________)

>

of microservices

All of observabillity in two activities

1. Detection of critical signals (SLIs)

2. Explaining variance

variance over time

]

“Visualizing everything that

to explai N variance. variance in the latency
distribution

Lesson 5

Distributed Tracing is more than
Distributed Traces

Distributed Tracing 101

A single

distributed trace — |

Microservices

== LIGHTSTEP

There are some things | need to tell you...

“I'm ready to be vulterable . ”

Trace Data Volume: a reality check

app transaction rate
X # of microservices
X cost of net+storage
X weeks of retention

way too much $$$%

== LIGHTSTEP

The Life of Trace Data: Dapper

Stage Overhead affects... Retained
Instrumentation Executed App 100.00%
Buffered within app process App 000.10%
Flushed out of process App 000.10%
Centralized regionally Regional network + storage 000.10%
Centralized globally WAN + storage 000.01%

== LIGHTSTEP
S

The Life of Trace Data: Bapper “Other Approaches”

Stage Overhead affects... Retained
Instrumentation Executed App 100.00%
Buffered within app process App 100.00%
Flushed out of process App 100.00%
Centralized regionally Regional network + storage 100.00%
Centralized globally WAN + storage ‘on-demand

== LIGHTSTEP

But wait, there’s morel!

Visualizing individual traces is
necessary but not sufficient

Observability boils down to two activities

1. Detection of Critical signals (SLls)
2. Explaining variance

variance <>3verV /2/me
“Visuah’zing everything that
might vary” is g terrible way

to explai '
plain variance, variance in the latency
distribution

Raw distributed trace data is too rich for our feeble brains
- A superior approach:

- Ingest 100% of the raw distributed trace data
- Measure SLlIs with high precision (e.g., latency, errors)
- Explain variance with biased sampling and “real” stats

Meta: more detail in my other talk today and Weds keynote

Almost Done...

L et’s review...

Two drivers for microservices: what are you solving for?
- Team independence and velocity
- “Computer Science”
- Understand the appropriate scale for any solution
- Hippies vs Ants
- Services can be too small (i.e., “the network isn’t free”)
- Observability is about Detection and Refinement
- “Distributed tracing” must be more than “distributed traces”

== LIGHTSTEP
S

Thank you!

Ben Sigelman, Co-founder and CEO
twitter: @el_bhs
email: bhs@lightstep.com

PS: LightStep announced something
cool today!

| am friendly and would love to
chat... please say hello, | don’t
make it to Europe often!

» Introducing LightStep Tracing
The easiest w: eams to adopt best-of-breed distributed tracin,

