
What We Got Wrong
Lessons from the Birth of Microservices at Google

March 4, 2019

Part One: The Setting

Still betting big on the
Google Search Appliance

“Those Sun boxes are
so expensive!”

“Those linux boxes are
so unreliable!”

“Let’s see what’s on
GitHub first…”

– literally nobody in 2001

“GitHub” circa 2001

- Must DIY:
- Very large datasets
- Very large request volume
- Utter lack of alternatives

- Must scale horizontally
- Must build on commodity hardware that fails often

Engineering constraints

Google eng cultural hallmarks, early 2000s

- Intellectually rigorous
- “Autonomous” (read: often chaotic)
- Aspirational

Part Two: What Happened

Cambrian Explosion of Infra Projects

Eng culture idolized epic infra projects (for good reason):

- GFS
- BigTable
- MapReduce
- Borg
- Mustang (web serving infra)
- SmartASS (ML-based ads ranking+serving)

Convergent Evolution?

Common characteristics of the most-admired projects:

- Identification and leverage of horizontal scale-points
- Well-factored application-layer infra (RPC, discovery,

load-balancing, eventually tracing, auth, etc)
- Rolling upgrades and frequent (~weekly) releases

Sounds kinda familiar…

Part Three: Lessons

Lesson 1

Know Why

Org design, human comms, and microservices

You will inevitably ship your org chart

Accidental Microservices

- Microservices motivated by planet-scale
technical requirements

- Ended up with something similar to modern
microservice architectures …

- … but for different reasons (and that
eventually became a problem)

What’s best for Search+Ads is
best for all!

What’s best for Search+Ads is
best for all! just the massive,

planet-scale services

“But I just want to serve 5TB!!”
– tech lead for a small service team

Planet-scale
systems software

Software apps with
lots of developers

Architectural Overlap

Microservices

Lesson 2

“Independence” is
not an Absolute

Hippies vs Ants

More Ants!

Dungeons and
Dragons!!

Lawful Good Chaotic Good

True Neutral

Lawful Evil Chaotic Evil

AWS Lambda

Platform decisions are
multiple choice

<redacted>

“Our team is going to
build in OCaml!”

kubernetes

Microservices Platforming: D&D Alignment
Good

Evil

ChaosLawful

Lesson 3

Serverless Still Runs on Servers

An aside: what do these things have in common?

All 100% Serverless!

Numbers every engineer should know

Latency Comparison Numbers (~2012)

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us
Round trip within same datacenter 500,000 ns 500 us
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip
Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

Notes

1 ns = 10^-9 seconds
1 us = 10^-6 seconds = 1,000 ns
1 ms = 10^-3 seconds = 1,000 us = 1,000,000 ns

Credit

By Jeff Dean: http://research.google.com/people/jeff/
Originally by Peter Norvig: http://norvig.com/21-days.html#answers

About “Serverless” / FaaS

About “Serverless” / FaaS

Main memory reference: 100 nanoseconds

Round trip within same datacenter: 500,000 nanoseconds

Real data!

Hellerstein et al.: “Serverless Computing:
One Step Forward, Two Steps Back”

- Weighs the elephants in the room
- Quantifies major issues, esp re service

comms and function lifecycle

Lesson 4

Beware Giant Dashboards

We caught the regression!

… but which is the culprit?

of things your users
actually care about

of microservices

of reasons
things break

Must reduce
the search space!

1. Detection of critical signals (SLIs)

2. Explaining variance

All of observability in two activities

variance over time

variance in the latency
distribution

“Visualizing everything that
might vary” is a terrible way
to explain variance.

Lesson 5

Distributed Tracing is more than
Distributed Traces

Distributed Tracing 101

A single
distributed trace

Microservices

There are some things I need to tell you…

app transaction rate

x # of microservices

x cost of net+storage

x weeks of retention

Trace Data Volume: a reality check

way too much $$$$

The Life of Trace Data: Dapper

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 000.10%

Flushed out of process App 000.10%

Centralized regionally Regional network + storage 000.10%

Centralized globally WAN + storage 000.01%

The Life of Trace Data: Dapper “Other Approaches”

Stage Overhead affects… Retained

Instrumentation Executed App 100.00%

Buffered within app process App 100.00%

Flushed out of process App 100.00%

Centralized regionally Regional network + storage 100.00%

Centralized globally WAN + storage on-demand

- Visualizing individual traces is
necessary but not sufficient

- Raw distributed trace data is too rich for our feeble brains
- A superior approach:

- Ingest 100% of the raw distributed trace data
- Measure SLIs with high precision (e.g., latency, errors)
- Explain variance with biased sampling and “real” stats

Meta: more detail in my other talk today and Weds keynote

But wait, there’s more!

Almost Done…

Let’s review…

- Two drivers for microservices: what are you solving for?
- Team independence and velocity
- “Computer Science”

- Understand the appropriate scale for any solution
- Hippies vs Ants
- Services can be too small (i.e., “the network isn’t free”)
- Observability is about Detection and Refinement
- “Distributed tracing” must be more than “distributed traces”

Ben Sigelman, Co-founder and CEO
twitter: @el_bhs

email: bhs@lightstep.com

PS: LightStep announced something
cool today!

Thank you!

I am friendly and would love to
chat… please say hello, I don’t

make it to Europe often!

