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Sometimes inconsistency is not an option
• Distributed locking 

• Safety critical systems 

• Distributed scheduling 

• Strongly consistent databases 

• Blockchain

Anything which requires guaranteed agreement

• Leader election 

• Orchestration services 

• Distributed file systems 

• Coordination & configuration 

• Strongly consistent databases



What is Distributed Consensus?

“The process of reaching agreement over 
state between unreliable hosts connected 
by unreliable networks, all operating 
asynchronously”





A walk through time
We are going to take a journey through the developments in 
distributed consensus, spanning over three decades. Stops 
include: 

• FLP Result & CAP Theorem  

• Viewstamped Replication, Paxos & Multi-Paxos 

• State Machine Replication 

• Paxos Made Live, Zookeeper & Raft 

• Flexible Paxos

Bob



Fischer, Lynch & Paterson Result
We begin with a slippery start

Impossibility of distributed 
consensus with one faulty process 
 Michael Fischer, Nancy Lynch 

and Michael Paterson 
ACM SIGACT-SIGMOD Symposium 
on Principles of Database Systems 

1983 

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf


FLP Result
We cannot guarantee agreement in an asynchronous system where even 
one host might fail. 

Why?

We cannot reliably detect failures. We cannot know for sure the difference 
between a slow host/network and a failed host 

Note: We can still guarantee safety, the issue limited to guaranteeing 
liveness.



Solution to FLP
In practice:

We approximate reliable failure detectors using heartbeats and timers. We 
accept that sometimes the service will not be available (when it could be). 

In theory:

We make weak assumptions about the synchrony of the system e.g. 
messages arrive within a year. 



Viewstamped Replication
the forgotten algorithm

Viewstamped Replication Revisited 
Barbara Liskov and James Cowling 

MIT Tech Report  
 MIT-CSAIL-TR-2012-021

Not the original from 1988, but recommended 

http://pmg.csail.mit.edu/papers/vr-revisited.pdf


Viewstamped Replication

In my view, the pioneering algorithm on the field of distributed consensus. 

Approach: Select one node to be the ‘master’. The master is responsible for 
replicating decisions. Once a decision has been replicated onto the majority 
of nodes then it is commit.  

We rotate the master when the old master fails with agreement from the 
majority of nodes.



Paxos
Lamport’s consensus algorithm

The Part-Time Parliament 
Leslie Lamport 

ACM Transactions on Computer Systems 
May 1998

http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf


Paxos

The textbook algorithm for reaching consensus on a single value. 

• two phase process: promise and commit 

• each requiring majority agreement (aka quorums)



Paxos Example - 
Failure Free



1 2

3

P: 
C:

P: 
C:

P: 
C:



1 2

3

P: 
C:

P: 
C:

P: 
C:

B

Incoming request from Bob



1 2

3

P: 
C:

P: 13 
C:

P: 
C:

B

Promise (13) ?

Phase 1

Promise (13) ?



1 2

3 P: 13 
C:

OKOK

P: 13 
C:

P: 13 
C:

Phase 1



1 2

3 P: 13 
C: 13, B

P: 13 
C:

P: 13 
C:

Phase 2

Commit (13,     ) ?B Commit (13,     ) ?B



1 2

3 P: 13 
C: 13, B

P: 13 
C: 13,

P: 13 
C: 13,

Phase 2

B B

OKOK



1 2

3 P: 13 
C: 13, B

P: 13 
C: 13,

P: 13 
C: 13, B B

OK

Bob is granted the lock



Paxos Example - Node 
Failure
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Paxos Example - 
Conflict
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What does Paxos give us?

Safety - Decisions are always final 

Liveness - Decision will be reached as long as a majority of nodes are up 
and able to communicate*. Clients must wait two round trips to the majority 
of nodes, sometimes longer. 

*plus our weak synchrony assumptions for the FLP result



Multi-Paxos
Lamport’s leader-driven consensus algorithm

Paxos Made Moderately Complex 
Robbert van Renesse and Deniz 

Altinbuken 
ACM Computing Surveys 

April 2015 
Not the original, but highly recommended 

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf


Multi-Paxos

Lamport’s insight:

Phase 1 is not specific to the request so can be done before the request 
arrives and can be reused for multiple instances of Paxos.  

Implication:

Bob now only has to wait one round trip



State Machine Replication
fault-tolerant services using consensus

Implementing Fault-Tolerant 
Services Using the State Machine 

Approach: A Tutorial  
Fred Schneider 

ACM Computing Surveys 
1990

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf


State Machine Replication (SMR)

A general technique for making a service, such as a 
database, fault-tolerant.

Application

Client Client
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CAP Theorem
You cannot have your cake and eat it

CAP Theorem 
Eric Brewer 

Presented at Symposium on 
Principles of Distributed 

Computing, 2000



Consistency, Availability & Partition 
Tolerance - Pick Two

1 2

3 4

B C



Paxos Made Live & Chubby
How google uses Paxos

Paxos Made Live - An Engineering 
Perspective 

Tushar Chandra, Robert Griesemer 
and Joshua Redstone 

ACM Symposium on Principles of 
Distributed Computing 

 2007

http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf


Isn’t this a solved problem?

“There are significant gaps between the description of the 
Paxos algorithm and the needs of a real-world system.  

In order to build a real-world system, an expert needs to use 
numerous ideas scattered in the literature and make several 
relatively small protocol extensions.  

The cumulative effort will be substantial and the final system 
will be based on an unproven protocol.”



Paxos Made Live

Paxos made live documents the challenges in constructing Chubby, a 
distributed coordination service, built using Multi-Paxos and State machine 
replication. 

 



Challenges
• Handling disk failure and corruption 

• Dealing with limited storage capacity 

• Effectively handling read-only requests 

• Dynamic membership & reconfiguration 

• Supporting transactions 

• Verifying safety of the implementation



Fast Paxos
Like Multi-Paxos, but faster

Fast Paxos 
Leslie Lamport 

Microsoft Research Tech Report 
MSR-TR-2005-112

http://research.microsoft.com/apps/pubs/default.aspx?id=64624


Fast Paxos

Paxos: Any node can commit a value in 2 RTTs 

Multi-Paxos: The leader node can commit a value in 1 RTT 

But, what about any node committing a value in 1 RTT?



Fast Paxos

We can bypass the leader node for many operations, so any node can 
commit a value in 1 RTT.  

However, we must increase the size of the quorum.



Zookeeper
The open source solution

Zookeeper: wait-free coordination 
for internet-scale systems 

Hunt et al 
USENIX ATC 2010 

Code: zookeeper.apache.org

http://static.cs.brown.edu/courses/csci2270/archives/2012/papers/replication/hunt.pdf
http://static.cs.brown.edu/courses/csci2270/archives/2012/papers/replication/hunt.pdf
http://zookeeper.apache.org


Zookeeper

Consensus for the masses.  

It utilizes and extends Multi-Paxos for strong 
consistency. 

Unlike “Paxos made live”, this is clearly 
discussed and openly available. 



Egalitarian Paxos
Don’t restrict yourself unnecessarily

There Is More Consensus in 
Egalitarian Parliaments 

Iulian Moraru, David G. Andersen, 
Michael Kaminsky 

SOSP 2013

also see Generalized Consensus and Paxos 

https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
http://research.microsoft.com/pubs/64631/tr-2005-33.pdf


Egalitarian Paxos

The basis of SMR is that every replica of an 
application receives the same commands in the same 
order. 

However, sometimes the ordering can be relaxed…
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Egalitarian Paxos

Allow requests to be out-of-order if they are commutative.  

Conflict becomes much less common.  

Works well in combination with Fast Paxos.



Raft Consensus
Paxos made understandable

In Search of an Understandable 
Consensus Algorithm 

Diego Ongaro and John Ousterhout 
USENIX ATC 

2014

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf


Raft
Raft has taken the wider community by storm. Largely, due to its 
understandable description. 

It’s another variant of SMR with Multi-Paxos.  

Key features: 

• Really strong leadership - all other nodes are passive 

• Various optimizations - e.g. dynamic membership and log compaction



Flexible Paxos
Paxos made scalable

Flexible Paxos: Quorum 
intersection revisited 

Heidi Howard, Dahlia Malkhi, 
Alexander Spiegelman 

ArXiv:1608.06696

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://arxiv.org/find/cs/1/au:+Howard_H/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Malkhi_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Spiegelman_A/0/1/0/all/0/1


Majorities are not needed

Usually, we use require majorities to agree so we can guarantee that all 
quorums (groups) intersect. 

This work shows that not all quorums need to intersect. Only the ones used for 
phase 2 (replication) and phase 1 (leader election). 

This applies to all algorithms in this class: Paxos, Viewstamped Replication, 
Zookeeper, Raft etc..



Example: Non-strict majorities

Phase 2  
Replication quorum

Phase 1 
Leader election quorum



Example: Counting quorums

Replication quorum Leader election quorum



Example: Group quorums

Replication quorum Leader election quorum



How strong is the leadership?

Strong 
Leadership Leaderless

Paxos
Egalitarian 

Paxos

Raft Viewstamped 
Replication
Multi-Paxos

Fast Paxos

Leader only 
when neededLeader driven

Zookeeper
Chubby



Who is the winner?
Depends on the award: 

• Best for minimum latency: Viewstamped Replication 

• Most widely used open source project: Zookeeper  

• Easiest to understand: Raft 

• Best for WANs: Egalitarian Paxos



Future

1. More scalable consensus algorithms utilizing Flexible Paxos. 

2. A clearer understanding of consensus and better explained 
algorithms. 

3. Consensus in challenging settings such as geo-replicated 
systems.



Summary

Do not be discouraged by impossibility results and 
dense abstract academic papers. 

Don’t give up on consistency. Consensus is 
achievable, even performant and scalable. 

Find the right algorithm and quorum system for your 
specific domain.  There is no single silver bullet.
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