Distributed Consensus:

Why Can't We All Just Agree?

Heidi Howard

PhD Student @ University of Cambridge
heidi.howard@cl|.cam.ac.uk
@heidiann360
hh360.user.srci.net

mailto:heidi.howard@cl.cam.ac.uk?subject=
http://hh360.user.srcf.net

Sometimes inconsistency is not an option

» Distributed locking * | eader election

o Safety critical systems * QOrchestration services

» Distributed scheduling * Distributed file systems

o Strongly consistent databases » Coordination & configuration

* Blockchain o Strongly consistent databases

Anything which requires guaranteed agreement

What Is Distributed Consensus?

“The process of reaching agreement over
state between unreliable hosts connected
by unreliable networks, all operating
asynchronously”

definec to he the

if there was no s
weans Jial Max

[Fer env nonems:
tnaximuin of all
Concitions E1l

B1(B) :
B2(R) :
B3(B) :

Although the e
implies <hat Ma
llll'l'l] 1R wWareg o

Te show that
BLB)-D3B) in

R is for the snmi

Lemma If B1

(
for any B, B in

Proof of Lemn
For any ballol £
decree different !

!"’r

10 prove the lew
The Paxcons gave
qu:.'. .; By_ul alll

1. Cheoose (' 4
PROOF: (' exi

2. Char > Byg
Proor: By 1

3. Byae N Csm 7
Proor: By B

1 use the “axon m
Paxan mathemali
were not as sopals

prragraps-style pra

-~

The Part-Time Parlizment

lnrearat voodn ar in WVnadne "2 nnot bar o wr'th a2 = A v #1v hn madli

The Part-Time Parliament . 29

13(""} = ‘Associrted variebles: presRal[p|. prevDen’p) | nertBallp]
A prevBal|p| = MazVote(ac, p, B)p
A prevDec|p] — MazVote(oo, p, B) gee

A neastBallp] > prevBuilp]

T4(n) = ‘Associrtec varirble: prenVofes 1] |
(status|p] # idle) =
vu = prevVotes|p @ A v = MazVote(lastTried p|, v,q, B)
A neztDallvp:] > lastTried|p]

3 & . . . 9 . -
IH(p) = ‘Aszocloted variobles: guorum[p], votere’n], deeree’r]]

(statns|p| = poiling) =
A quorum|p € {v,4 v & prevVotes|p}
A3dBe B: A quorum|pl = B,
A decreelp] — Do,
A volerslp] € B
A lustTried|p| = Bra

e

i5 ‘Associebed varieble:]

N BI(B) A BQ(B:‘ A 33(8)
AYB e B: B, is a majority set

1=

i7 ‘Aszocioted varioble: M|
A Y NextBallot(b) ¢ M : (h < lastTried [owner(s)])
A P LastVate(h, ©) € M = A v = MazVate(h, 1,4, B)
A nextDallvp:] > b
A% DeginBailot (b, d, € M : 1B € B: (Byyi — 6) A (Byee — d)
AN Votedb,p) M :IBEB: (B b ApeD,..)
AV Suceess d) € M : dp: vuleone[p] = d 7 BLANK

The Pexons hac to prove that I satisfies the three conditions given ebove. The
[irel condition, that I Lolds izitially, recuires chiecking Lhal eacl: coujunct is true [or
Lhe initial valuee of all Lhe variables, While nol slated explicilly, Lleee initial values
can he inferred from the variahles’ deseriptions, and checking the frst condition is
straigh=forward. The second condition, that [‘mplies consistency, follows fram 71,
the frst conjunct of /6. and Theorem 1 The harc part was proving the shird
condizion, the inveriance of I. which meant proving that I is lefs true by every
aclion. This condition = proved by showing lal, for each conjunct of f, execuling
amy acuion when ! is Lrue leaves Llal conjuoct true, The prools are skelched below,

I1(p) B is changed only by adding a new ballot cr acding a new priest to I, for
scme D € B, neither of which can falsify I1(p). The value ¢f cutcome[p) is changed
only by the Succeed and Receive Success Message acticns, T'he enabling con-
dition anc I5(p) iuply that 1) is lell true by the Succeed action. The enabling
condision, I1(p), and the last conjunet of 77 ‘mply that 71(p) is lo%t true by the
Receive Suecess Message netion.

A Hundred Impaossibility Proofs for Distributed Computing

Nancy A. Lynch *
Lab for Computer Science
MIT, Cambridge, MA 02139
lynch@tds.lcs.mit.edu

1 Introduction

This talk is about inpossibility results in the area of
distributed computing. [n this category, I include not
just results that say that a particular task cannot be
accomplished, but also Jower bound results, which say
that a task cannot be accomplished within a certain
bound on cost.

[started out with a simple plan for preparing this
talk: I would spend a couple of weeks reading all the
impossibility proofa in our field, and would catego-
rize them according to the ideas used. Then I would
make wise and general observations, and try to pre-
dict where the future of this area is headed, That
turned out to be a bit too ambitious; there are many
more such results than I thought. Although it is of-
ten hard to say what constitutes a “different result” | [
managed to count over 100 such impoasibility proofs!
And my search wasn’t even very systematic or ex-
haustive.

It's not quite as hopeless to understand this area as
it might seem from the number of papers. Although
thara are 100 different resultg, there aren’t 100 dif.
ferent ideas. I thought I could contribute something
by identifying some of the commeonality among the
different results.

So what I will do in this talk will be an incomplete
version of what [originally intended. I will give you

*This work was supported in part by the National Science
Foundation (NSF) under Qrant CCR-86-11442, by the Office of
Naval Research (ONR) uindm Contract NOGO14-85-K-0108 aml
by the Defense Advanced Research Projects Agency (DARFA)
under Cantract ND0014-83-K-0125.

* Permission to copy without fee all or part of this material is granted

provided thar the copies arc not made or distributed for dircct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computng Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.

® 1939 ACM 0-89791-326-4 /80,0008 /0001 $1.50

a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and
in particular for placing perhaps undue emphasis on
results I have been involved in (but those are the ones
[know best!). I will describe the techniques used, as
well as giving some historical perspective. ['ll inter-
sperse this with my opinions and observations, and
['ll try to collect what I consider to be the most im-
portant of these at the end. Then ['ll make some
suggestions for future work.

2 The Results

1 classified the impossibility results 1 found into the
following categories: shared memory resource allo-
cation, distributed consensus, shared registers, com-
puting in rings and other networks, communication
protocols, and miscellaneous.

2.1 Shared Memory Resource Alloca-
tion

This was the area that intreduced me not only to
the peasibility af doing impassibility proofs for dis-
tributed computing, but to the entire distributed
computing research area.

Tn 1976, when I was at the University of Southern
California, Armin Cremers and Tom Hibbard were
playing with the problem of mutual ezclusion (or al-
location of ona resource) in a shared memory envi
ronment. In the environment they were considering,
a group of asynchronous procasses communicate via
gshared memory, using operations such as read and
write or test-and-set.

The previcus work in this area had consieted of
n series of papers by Dijkstra [38] and others, each
presenting 2 new algorithm guaranteeing mutual ex-
clusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loosely; there was no formal model used for

A walk through time

We are going to take a journey through the developments in
distributed consensus, spanning over three decades. Stops
include: Bob

e FLP Result & CAP Theorem

e Viewstamped Replication, Paxos & Multi-Paxos

o State Machine Replication

 Paxos Made Live, Zookeeper & Ratft

e Fexible Paxos

-Ischer, Lyncn & Paterson Result

(5

We begin with a slippery start

~

~

|[mpossibility of distributed

consensus with one faulty process

_

Michael Fischer, Nancy Lynch
and Michael Paterson

ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems

19383

j

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

—LP Result

We cannot guarantee agreement in an asynchronous system where even
one host might fail.

Why?

We cannot reliably detect tailures. We cannot know for sure the difference
between a slow host/network and a failed host

Note: \We can still guarantee safety, the issue limited to guaranteeing
lveness.

Solution to FLP

In practice:

We approximate reliable failure detectors using heartbeats and timers. We
accept that sometimes the service will not be available (when it could be).

In theory:

We make weak assumptions about the synchrony of the system e.g.
messages arrive within a year.

Viewstamped Replication

the forgotten algorithm

4 R

Viewstamped Replication Revisited
Barbara Liskov and James Cowling
MIT Tech Report
MIT-CSAIL-TR-2012-021

_ J

Not the original from 1988, but recommended

http://pmg.csail.mit.edu/papers/vr-revisited.pdf

Viewstamped Replication

In my view, the pioneering algorithm on the field of distributed consensus.

Approach: Select one node to be the ‘'master’. The master is responsible for
replicating decisions. Once a decision has been replicated onto the majority
of nodes then it Is commit.

We rotate the master when the old master fails with agreement from the
mayjority of nodes.

Paxos

Lamport’s consensus algorithm

4 B

The Part-Time Parliament
Leslie Lamport
ACM Transactions on Computer Systems

May 1998
_ / Y

http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf

Paxos

The textbook algorithm for reaching consensus on a single value.

e twWO phase process: promise and commit

* each requiring majority agreement (aka guorums)

Paxos example -
Fallure rree

4 /@

Incoming request from Bob

P P:
C _J \C: _J
Promise (13) ? Promise (13) 7

4)
@ P: 13
\C: J

5

Phase 1

Phase 1

P: 13 P13
\C), kC. _
Commit (13,8& Commit (13,8) ?
@ P13 A
' G113,

+
\J)
Q nRe
(]

Phase 2

Phase 2

Bob Is granted the lock

Paxos example - Node
Fallure

U

<

Promise (13) 7

4 /@

Incoming request from Bob

=

Promise (13) 7

P

g
P:

=

C:

13

~

Phase 1

Phase 1

P 13

C: 13,

Phase 2

g
P: 13
C: 13,

Phase 2

g
P: 13
C: 13,

' ,'
N ° .63
(I \
’ .
g .
'y . '.
. Y "
=
. 0
1\ []
()
i)
tJ
=P 3
1%y
3 o, | |
» =
.)

g
P: 13
C: 13,

n

Phase 1

Phase 1

Commit (22,1z8) 7

Phase 2

Phase 2

Paxos example -
Conflict

Phase 1 - Bob

Phase 1 - Alice

Phase 1 - Bob

Phase 1 - Alice

What does Paxos give us”

Safety - Decisions are always final

Liveness - Decision will be reached as long as a majority of nodes are up
and able to communicate®. Clients must wait two round trips to the majority
of nodes, sometimes longer.

*olus our weak synchrony assumptions for the FLP result

Multl-Paxos

Lamport’s leader-driven consensus algorithm

~

KF’axos Made Moderately Complex
Robbert van Renesse and Deniz
Altinbuken

ACM Computing Surveys
u April 2015 Y

Not the original, but highly recommended

http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

Multl-Paxos

Lamport’s insight:

Phase 1 is not specific to the request so can be done before the request
arrives and can be reused for multiple instances of Paxos.

Implication:

Bob now only has to walit one round trip

State Machine Replication

fault-tolerant services using consensus

e : Implementing Fault-lolerant A
\ Services Using the State Machine
Approach: A Tutorial
Fred Schneider
ACM Computing Surveys

_ 1990)

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf
https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

State Machine Replication (SMR)

A general technique for making a service, such as a
database, fault-tolerant.

Application

7N\

Client Client

Application

Consensus

Application

Consensus

Application

Consensus

Network

Client

Consensus

Client

Consensus

CAP Theorem

You cannot have your cake and eat it

-~

_

CAP Theorem
Eric Brewer
Presented at Symposium on
Principles of Distributed
Computing, 2000

/

Consistency, Availability & Partition
lolerance - Pick wo

Paxos Made Live & Chubby

How google uses Paxos

-~

Perspective

and Joshua Redstone

Distributed Computing
2007
_

~

Paxos Made Live - An Engineering
Tushar Chandra, Robert Griesemer

ACM Symposium on Principles of

/

http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/paxos_made_live.pdf

Isn’t this a solved problem?

“There are significant gaps between the description of the
Paxos algorithm and the needs of a real-world system.

In order to build a real-world system, an expert needs to use
numerous ideas scattered in the literature and make several
relatively small protocol extensions.

The cumulative effort will be substantial and the final system
will be based on an unproven protocol.”

Paxos Maae Live

Paxos made live documents the challenges in constructing Chubby, a
distributed coordination service, built using Multi-Paxos and State machine
replication.

Challenges

Handling disk failure and corruption

Dealing with limited storage capacity
Effectively handling read-only requests
Dynamic membership & reconfiguration

Supporting transactions

Veritying safety of the implementation

Fast Paxos

Like Multi-Paxos, but taster

-

_

Fast Paxos
Leslie Lamport
Microsoft Research Tech Report
MSR-TR-2005-112

~

j

http://research.microsoft.com/apps/pubs/default.aspx?id=64624

Fast Paxos

Paxos: Any node can commit a value in 2 RTTs

Multi-Paxos: The leader node can commit a value in 1 RTT

But, what about any node committing a value in 1 RTT?

Fast Paxos

We can bypass the leader node for many operations, so any node can
commit a value in 1 RTT.

However, we must increase the size of the quorum.

/00oKeeper

The open source solution

4 R

/ookeeper: wait-free coordination
for internet-scale systems

Hunt et al
USENIX ATC 2010

Code: zookeeper.apache.org

_ /

http://static.cs.brown.edu/courses/csci2270/archives/2012/papers/replication/hunt.pdf
http://static.cs.brown.edu/courses/csci2270/archives/2012/papers/replication/hunt.pdf
http://zookeeper.apache.org

/00oKeeper

Consensus for the masses.

't utilizes and extends Multi-Paxos for strong

consistency.

Unlike "Paxos made live”, this Is clearly

discussed and openly aval

able.

—Qalitarian Paxos

Don't restrict yourselt unnecessarily

é There Is More Consensus In A
Egalitarian Parliaments
lullan Moraru, David G. Andersen,
Michael Kaminsky

. SOSP 2013)

also see Generalized Consensus and Paxos

https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
https://www.cs.cmu.edu/~dga/papers/epaxos-sosp2013.pdf
http://research.microsoft.com/pubs/64631/tr-2005-33.pdf

—Qalitarian Paxos

The basis of SMR is that every replica of an

application receives the same commands In the same
order.

However, sometimes the ordering can be relaxed...

Total Ordering

Partial Ordering

AN

Many possible orderings

—Qalitarian Paxos

Allow requests to be out-of-order it they are commutative.

Conflict becomes much less common.

Works well In combination with Fast Paxos.

Raft Consensus

Paxos made understandable

g In Search of an Understandable X
Consensus Algorithm

Diego Ongaro and John Ousterhout
USENIX ATC

_ 2014 W,

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf

Raft

Raft has taken the wider community by storm. Largely, due to its
understandable description.

lt's another variant of SMR with Multi-Paxos.
Key features:

* Really strong leadership - all other nodes are passive

e \Various optimizations - e.g. dynamic membership and log compaction

Flexipble Paxos

Paxos made scalable

-

Flexible Paxos: Quorum
Intersection revisited
Heidl Howard, Dahlia Malkhi,
Alexander Spiegelman
ArXiv:1608.06696

~

https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
https://arxiv.org/find/cs/1/au:+Howard_H/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Malkhi_D/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Spiegelman_A/0/1/0/all/0/1

Majorities are not needed

Usually, we use require majorities to agree so we can guarantee that all
gquorums (groups) intersect.

This work shows that not all quorums need to intersect. Only the ones used for
ohase 2 (replication) and phase 1 (leader election).

This applies to all algorithms in this class: Paxos, Viewstamped Replication,
/00keeper, Raft etc..

Example: Non-strict majorities

Example: Counting quorums

OO0 000 OO

00O O
OO O
OO0 O

OO0 OO0
OO0 OO
OO0 OO0

Example: Group quorums
*Jg3 @B3
56 50 6

- N FQQ
QO le'e}

How strong Is the leadership®

Leader only

Leader driven when needed

Strong
~eadersnip | eaderless
Raft Viewstampead
Replication -ast Paxos Paxos
Multi-Paxos Egalitarian
Paxos

/ookeeper
Chubby

Who Is the winner??

Depends on the award:

e Best for minimum latency: Viewstamped Replication

* Most widely used open source project: Zookeeper

e Easiest to understand: Raft O
* Best for WANs: Egalitarian Paxos

n

T o—

Future

1. More scalable consensus algorithms utilizing Flexible Paxos.

2. A clearer understanding of consensus and better explained
algorithms.

3. Consensus Iin challenging settings such as geo-replicated
systems.

summary

Do not be discouraged by impossibility results and
dense abstract academic papers.

Don’t give up on consistency. Consensus is
achievable, even performant and scalable.

Find the right algorithm and quorum system for your
specific domain. There is no single silver bullet.

heidi.howard@cl.cam.ac.uk
@heidiann360

mailto:heidi.howard@cl.cam.ac.uk?subject=

