SESSION + Live Q&A

Tools to Put Deep Learning Models in Production

While there are a lot of machine learning frameworks and libraries available, putting the models in production at large scale is still a challenge. I’d like to talk about how we took on the challenge of supporting the data scientists with their efforts by making it easy to put their models in production. I’ll be covering how we:

  • chose our tools and developed the internal deep learning infrastructure
  • train our models in docker containers
  • automate the re-training of models
  • deploy models using Kubernetes

I’ll also talk about how we optimize our model prediction infrastructure for latency or throughput depending on the use case.


Speaker

Sahil Dua

Developer at Booking.com; Open Source Contributor in DuckDuckGo, GitHub and Pandas

Sahil is a software developer at Booking.com. He has been involved in leveraging container infrastructure to help Booking.com’s internal teams in taking advantage of deep learning techniques at scale. An open source software enthusiast, Sahil is a core contributor and community leader for...

Read more
Find Sahil Dua at:

Location

Mountbatten, 6th flr.

Track

The Practice & Frontiers of AI

Topics

Artificial IntelligenceDeep LearningKubernetesScaleOptimization

Share

From the same track

SESSION + Live Q&A Artificial Intelligence

Fuelling the AI Revolution with Gaming

Artificial Intelligence will improve productivity, products and services, across a broad range of applications, all benefiting humanity. NVIDIA is researching all areas and working closely with top research labs around the world, Enterprise & startups in both problem-solving and getting...

Alison Lowndes

Artificial Intelligence DevRel @NVIDIA

SESSION + Live Q&A Interview Available

Models in Minutes not Months: AI as Microservices

Companies are redefining their businesses by building models and learning from data. Whether it is using data science to predict their best sales and marketing targets, automating digital customer interactions using bots, or reducing waste in logistics and manufacturing - Artificial Intelligence...

Sarah Aerni

Director, Data Science @Salesforce Einstein

SESSION + Live Q&A Artificial Intelligence

AI in the Asset Management Industry

In the Financial industry, Artificial Intelligence has been one of the sophisticated techniques used by early adopters to manage multiple assets. Those early adopters are Quantitative Hedge Funds, around since the 80s and managing today an estimated USD 940 billion. After presenting the main...

Antoine Pichot

Quantitative Researcher @Systematica Investments

SESSION + Live Q&A Deep Learning

Machine Intelligence at Google Scale

The biggest challenge of Deep Learning technology is the scalability. As long as using single GPU server, you have to wait for hours or days to get the result of your work. This doesn't scale for production service, so you need distributed training on the cloud eventually, or take advantage of...

Guillaume Laforge

Developer Advocate at Google Cloud and PMC Chair for Apache Groovy

SESSION + Live Q&A Artificial Intelligence

AI Panel

Join the track speakers and invited guests as they discuss where AI is heading and how it's affecting software today.

Sahil Dua

Developer at Booking.com; Open Source Contributor in DuckDuckGo, GitHub and Pandas

Alison Lowndes

Artificial Intelligence DevRel @NVIDIA

Guillaume Laforge

Developer Advocate at Google Cloud and PMC Chair for Apache Groovy

Antoine Pichot

Quantitative Researcher @Systematica Investments

Sarah Aerni

Director, Data Science @Salesforce Einstein

Eric Horesnyi

CEO @streamdata.io

Philip Winder

Consultant, Engineer, Scientist @Winder Research and Development Ltd.

View full Schedule